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Abstract—For thermalhydraulic systems analysis, linear interpolation algorithms are commonly used for
the calculation of thermodynamic properties. However, these algorithms can use a substantial amount of
computer time and memory. An alternative to this approach suggested in the past is the use of
approximation formulas. Such formulas for the calculation of the thermodynamic properties of light water
for saturation conditions are presented here, based on the 1984 NBS/NRC Steam Tables. The range of
these approximations is from below 1b to just below the critical point (22.055 MPa) with a deviation from
tabulated values of not more than 0.22%. The formulas were determined by the method of least squares,
enabling a minimization of deviations from the line of best fit and the fitting of functions simple enough
to be used with programmable calculators, as well as microcomputers. In addition to the rapid calculation
of the properties, the simple curve fits are instrumental in the development of the rate form of the equation
of state.

Since any given property cannot be accurately fitted over the entire pressure range with a single simple
expression, the pressure range was split into subranges. Special care was taken to ensure that the slopes
of the curve fits were continuous across the boundaries since discontinuities in the slopes of the property
tables can cause instabilities and failure of search algorithms in typical computer codes.

Key Words: water properties, curve fit, fast, saturation.

INTRODUCTION

In the analysis of flow systems, the thermodynamic properties are usually calculated by linear
interpolation algorithms applied to thermodynamic tables stored on computer. However, the
storage of these steam tables can occupy a large amount of computer memory. As well, the linear
interpolation algorithms require a searching algorithm to select the proper numbers from the tables.
Thus the use of such algorithms can considerably tax computer running time. An alternative to
this method is the employment of approximate formulas, similar to those described by Firla (1984),
which can rapidly compute the value of a property with satisfactory accuracy for the purpose of
system analysis.

This paper concentrates on the thermodynamic properties of light water for saturation
conditions. At saturation, the temperature can be expressed as a function of pressure only.
Therefore, we can represent the properties by a number of simple functions containing one
independent variable: pressure.

In addition to the direct calculation of thermodynamic properties, these approximation functions
can be applied to the determination of the rate form of the equation of state (Garland & Sollychin
1988).

APPROXIMATION METHOD

The approach taken in developing the correlations minimized the deviations from the reference
steam tables. To maintain a high accuracy it was necessary to subdivide the range of pressure
variation into several regions. The simple functions used were fitted to the data by the method of
least squares, as discussed in the following section.

As system codes often require the slopes of the properties, the fits to the steam table by a set
of approximation functions, were required to exhibit a continuous first derivative across the entire
range of pressure.
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Least-squares method
We represent a set of n data points by some relationship y = f(x), containing p unknown

parameters a,, a, ..., a,, the deviations or residuals are given by
D;=f(x;) — y,. (1]
The sum of the squares of the deviations,
S=) Di<} Uf(x)—yl (2]
i=1 i=1
is a function of a,, a,,...,a,. The parameters are determined such that S is a minimum

(dS/da; =0, dS/da,=0,...,dS/da,=0).
If we take y = f(x) to be a linear function (y = a, + a,x), the residuals are D, = (a, + a,x,) — y,,
so that

S=(a+ax,—yp)V+(a+ax,—p)l+... +(@+ax,—y) (31
On differentiating S with respect to a, and a,, two equations are obtained:
ds
da- Aay+axi—y)+2at@x,—y)+...+Aa +ax,—y,)=0
1
and
ds
da =2(x))(a, + @ x, — ) + 2(x) (@ + @ x; — y) + ...+ 2x,) (@ + ayx, — ) =0 [4]
2
Dividing by two and collecting the coefficients of a, and a,, we get
ha, +<Z xl)a2= )37
i=1 i=1
and

<z”: xl>al + (Zn: x?)“z = i X1 Vi (3]

i=1

Similarly, for a second-order polynomial (quadratic equation):

4a, + (i xl>a2 + (Zn: x?)ag, = Zn: Vis [6a]
(i x,-)a. + (z x%)az ¥ <z x?)aa =Y 5 [6b)

and

<Z xf)a,+<z x?)a2+<z x?>a3= Y xiy,. [6¢c]
i=1 i=1 i=1 i=1

These equations can be solved for 4, a, and a; to give the function y = @, + a,x + a;x2 Higher
order polynomials may also be fitted in this manner, of course.

Correlations are often described by a correlation constant, r. This number expresses the strength
and direction of the correlation and can vary from + 1.00 to — 1.00. For positive correlations where
an increase in one variable tends to lead to an increase in the other variable being considered, r
is positive. For negative correlations where an increase in one variable tends to lead to a decrease
in the other, r is negative. The largest magnitude of r is 1.00 which represents a perfect correlation.
Thus the closer the points in a plot of the two variables come to falling on the line of best fit, the
nearer r will be to +1.00 or —1.00. The following section describes different types of functions
that can be determined using the method of least squares. The correlation constant can be used
as a way to compare each function and to see if the range being fitted is too large to obtain a high
enough accuracy with the steam tables.
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Table 1. Transforming functions into a linear form

Function Operations on data Linear form
1 1

y=g+b X=>— y=a(—)+b

x fc x

x=>log x

y =ax?® y=>lo§y (log y) = b(log x) + log a
y =aexp(bx) y=>logy (logy)=bx +loga
y=alogx+b x=log x y=a(logx)+b

The correlation constant for y =ax + b is calculated as

b Zyﬂ““Z(x.y,)—('_‘-;l_)_

i=1 i=1

S o) - <—§—)—

i=1

r =

Similarly, for y = ax?+ bx +c,

(Zy.>
4 Zyl+b Z(x:}’.)‘*'a E(X yl)_L

im] i

S - @

i=1

Using least squares for other functions
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(71

(8]

Data can be approximated by other functions which include power, exponential and logarithmic
forms. The coefficients of each of these functions can be determined using [5] by altering the data,
as shown in table 1, to transform the functions into a linear form. The power function and the
exponential function are expected to be useful in producing an accurate curve fit of the
thermodynamic properties. However, the method of least squares determines these functions such
that x =0 for y =0. To obtain better accuracy with these curves, we can shift the data by adding
to or subtracting from the x and y values. For example, figure 1(a) shows two curves passing

y=Y, /,

X

(a) (b)

Figure 1. Example of data shifting. (a) The solid line represents the best-fit curve as determined by sight.
The dashed line represents the best-fit power curve as determined by the method of least squares. (b) The
y values in (a) have a constant value, Y,, subtracted from them such that the solid line passes through

the origin. The dashed line is now more comparable to the solid line and is given by y — Y, =
a and b are found using [5].

M.F. 14.3—F
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(a) (b) ()

Figure 2. Dealing with negative sloping curves. (a) The actual data points are plotted. The slope of a curve

passing through these points is negative. From figure 1, one can see that the shift that would produce

the most accurate fit makes all (y — Y;) values negative in this case. (b) The negative y values are plotted

here. The slope of a curve passing through these points is positive. (c) The negative y values are shifted

upward by a constant, Y,, such that all y” = —y + ¥, are positive. The method of least squares can now

be used for the power and exponential functions. For the power function, the equation determined by
least squares is given by y = ¥, —ax".

through a set of points. Curve 1 is the best fit, as determined by sight, and curve 2 is the best fit
of a power function, as determined by the method of least squares, without shifting the data. Figure
1(b) shows the two curves after a constant, ¥,, has been subtracted from each y value. We can
see the effectiveness of a shifting of data. By comparing the correlation constants for different shifts,
one can determine which shift gives the most accurate curve fit. The shifting of the data should
be done before the operations described in table 1 are carried out.

In some circumstances, such as when there is a decrease in y for an increase in x, the necessary
shifting of data would produce negative values either in the x or y direction. To avoid taking the
log of a negative number we can fit the negative of the y values. Figure 2 demonstrates this
procedure.

CORRELATIONS OF LIGHT-WATER THERMODYNAMIC
PROPERTIESt

The following thermodynamic properties of light water at saturation were fitted to approxi-
mation functions: (1) specific volume/density, (2) specific enthalpy, (3) saturation temperature, (4)
specific entropy, (5) specific heat and (6) dynamic viscosity. The reference source of data for all
of these properties, with the exception of viscosity, is the NBS/NRC Steam Tables (Haar et al.
1984). The subroutines by Sokolnikoff & Redheffer (1966) were used for the calculation of the
above properties.

These subroutines were also used in conjunction with the equation for viscosity given by White
(1975/1983). This combination was shown to yield an adequate representation of viscosity by
Kamgar-Parsi & Sengers (1982).

The set of functions for each property are listed along with their range of use and the worst
accuracy encountered over this range. Figures 3~13 show the properties and the accuracy of the
approximation, as calculated by

Y,
steam tables * 100 [0/0]‘ [9]

Ysleam tables

approx

accuracy =

For all of the properties, the range of each function was chosen such that the accuracy is as small
as possible and the first derivatives of two adjoining functions are equal at the point where they

+Program diskettes, containing the programs used in the determination of the approximation functi.ons and in the
reproduction of property tables, can be obtained from the first author. These diskettes are available in either PDP11
or IBM-PC format.
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Figure 7. Saturation temperature.

join. Thus the sets of functions for specific volume and specific enthalpy can be used for the
calculation of the rate form equation of state (Garland & Sollychin 1988) and in computer
algorithms involving the Jacobi of the system matrix. The continuity of the slopes for specific
volume (liquid phase), density (gas phase) and specific enthalpy for both phases, is shown in figures
14-17.

The approximation functions can now be applied to the rate form of the equation of state (see
the appendix). Plots of the F functions of [A.2] are shown in figures 18-22. Each of the F functions
yields a smooth continuous curve, as desired.

Specific volume, liquid phase at saturation

The functions given below are an approximation to the specific volume of light water in the liquid
phase, v; [m*/kg], for saturation conditions. The pressure range within which they may be used is
0.075-21.5 MPa with the accuracy not worse than 0.14%. Figure 3 shows the accuracy of the
approximation.

Approximation functions:

vy = 1.2746977E — 4% P xx(0.4644339) + 0.001
0.075 MPa < P < 1.00 MPa

vy = 1.0476071E — 4 % P *x(0.5651090) + 0.001022
1.00 MPa < P < 3.88 MPa

vy = 3.2836717E — 5« P + 1.12174735E — 3
3.88 MPa < P < 8.84 MPa

v = 3.3551046E — 4 xexp(5.8403566E — 2« P) + 0.00085
8.84 MPa < P < 14.463 MPa

vy = 3.1014626E — 8+ P xx(3.284754) + 0.00143
14.463 MPa < P < 18.052 MPa

vy = 1.5490787E — 11 % P %% (5.7205) + 0.001605
18.052 MPa < P < 20.204 MPa

v, =4.1035988E — 24 * P %x(15.03329) 4+ 0.00189
20.204 MPa < P < 21.5MPa.
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Figure 16. The slope of the specific enthalpy of the liquid Figure 17. The slope of the specific enthalpy of the vapor
phase at saturation. phase at saturation.

Density, gas phase at saturation

The following correlations give an approximation to the density of light water in the gas phase,
Dg[kg/m?], for saturation conditions. Their range of use is 0.085-21.5 MPa with the accuracy not
worse than 0.22%. Figure 4 shows the accuracy of the approximation.

Approximation functions:

Dg = 5126076 % P %x(0.9475862) + 0.012
0.085 MPa < P < 1.112 MPa

D = 4.630832 % P xx(1.038819) + 0.52
1.112MPa < P <3.932 MPa

D =2.868721 « P *x(1.252148) + 3.80
3.932 MPa < P < 8.996 MPa

Dg =0.5497653 % P »x(1.831182) + 18.111
8.996 MPa < P < 14.628 MPa

Dg = 8.5791582E — 3 % P x(3.176484) + 50.0
14.628 MPa < P < 18.21 MPa

Dg =3.5587113E — 6* P »x(5.660939) + 88.0
18.21 MPa < P < 20.253 MPa

D¢ = 3.558734E — 16+ P x(13.03774) + 138.0
20.253 MPa < P < 21.5 MPa.

Specific enthalpy, liquid phase at saturation

The correlations given below approximate the specific enthalpy of light water in the liquid phase,
h[kJ/kg], for saturation conditions. The range for which they may be used is 0.075-21.70 MPa
with the accuracy not worse than 0.10%. Figure 5 shows the accuracy of the approximation.

Approximation functions:
hy =912.1779 % P *x(0.2061637) — 150.0
0.075 MPa < P < 0.942 MPa
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Figure 22. The function Fi.

hy = 638.0621 ¢ P+ (0.2963192) + 125.0
0.942 MPa < P < 4.02 MPa

By = 373.7665 + P % (0.4235532) + 415.0
4.02MPa < P < 9.964 MPa

hy = 75.38673 % P ++(0.8282384) + 900.0
9.964 MPa < P < 16.673 MPa

By =0.1150827 + P »(2.711412) + 1440.0
16.673 MPa < P < 20.396 MPa

hy =9.1417257E — 14+ P +(11.47287) + 1752.0
20.396 MPa < P < 21.70 MPa.

Specific enthalpy, gas phase at saturation

The following functions give an approximation of the specific enthalpy of light water in the gas
phase, hg[kJ/kg], for saturation conditions. Their range is 0.075-21.55 MPa with the accuracy not
worse than 0.066%. Figure 6 shows the accuracy of the approximation.

Approximation functions:

hg = —4.0381938E — 6%(3.0 — P)*x(15.72364) + 2750.0
0.075MPa < p < 0.348 MPa

hg= —0.5767304 xexp( — 1.66153 (P — 3.2)) + 2800.0
0.348 MPa < P < 1.248 MPa

hg= —"7.835986%(3.001 — P)*x2.0 + 2.934312x(3.001 — P) + 2803.71
1.248 MPa < P < 2.955 MPa

hg= —1.347244% (P — 2.999) %% 2.0 — 2.326913 % (P — 2.999) + 2803.35
2.955MPa € P < 6.522MPa

hg= —0.9219176% (P — 9.00)**2.0 — 16.38835x (P — 9.00) 4+ 2742.03
6.522 MPa < P < 16.497 MPa
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hg = —3.532177 (P — 8.00)*%2.0 + 29.81305 (P — 8.00) + 2565.00
16.497 MPa < P <20.193 MPa

hg= —22.92521 (P — 18.0)%%2.0 + 44.23671 (P — 18.0) + 2415.01
20.193 MPa < P < 21.55 MPa.

Saturation temperature

The correlations given below are for the saturation temperature of light water, T, [°C]. The
pressure range for which they may be used is 0.070-21.85 MPa with the accuracy not worse than
0.02%. Figure 7 shows the accuracy of the approximation.

Approximation functions:
T, =236.2315%P *x(0.1784767) — 57.0
0.070 MPa < P < 0.359 MPa’
T = 207.9248 x P % (0.2092705) — 28.0
0.359 MPa < P < 1.676 MPa
T, = 1850779 P *x(0.2323217) — 5.0
1.676 MPa < P < 8.511 MPa
=195.1819 % P xx(0.2241729) — 16.0
8.511 MPa < P < 17.69 MPa
T, = 227.2963* P »x(0.201581) — 50.0
17.69 MPa < P < 21.85MPa

Sdl

Specific entropy, liquid phase at saturation

The functions given below are an approximation of the specific entropy of light water in the
liquid phase, s, [kJ/kg], for saturation conditions. Their range of use is 0.065-21.25 MPa with the
accuracy not worse than 0.12%. Figure 8 shows the accuracy of the approximation.

Approximation functions:

5. = 3.340244 % P xx(0.125474) — 1.20
0.065 MPa < P < 1.666 MPa

s = 1.748203 % P x%(0.2275611) + 0.40
1.666 MPa < P < 8.825 MPa

sy = 0.2549248 P %+ (0.6381866) + 2.25
8.825MPa < P < 16.66 MPa

s; = 4.3632383E — S*(P — 0.40) #+(3.153273) + 3.50
16.66 MPa < P < 21.25 MPa.

Specific entropy, gas phase at saturation

The following functions give an approximation to the specific entropy of light water in the gas
phase, s [kJ/kg], for saturation conditions. Their range is 0.025-21. 50 MPa with the accuracy not
worse than 0.10%. Figure 9 shows the accuracy of the approximation.

Approximation functions:
sg = 6.58681 — 0.335924 xlog(P)
0.025 MPa < P < 1.48 MPa
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Sg = 71.80 — 1.227644 + P %*(0.2481072)
1.48 MPa < P < 8.05 MPa

5g = 6.30 — 0.084638514 » P »»(0.9082161)
8.05MPa < P £ 15.64 MPa

56 = 5.50 — 3.6897161E — 3 (P — 7.80) **(2.012466)
15.64 MPa < P < 20.00 MPa

5g = 5.00 — 0.042830642 x (P — 18.7) *»(1.779526)
20.00 MPa < P < 21.5MPa.

Specific heat, liquid phase at saturation

345

The correlations given below are an approximation to the specific heat of light water in the liquid
phase, Cp [kJ/kg K], for saturation conditions. Their range of use is 0.030-20.3 MPa. For pressures
< 13.3 MPa, the accuracy is not worse than 0.08%; for pressures >13.3 MPa, the error can be as

high as 0.60%. Figure 10 shows the accuracy of the approximation.
Approximation functions:
C, = 0.247763 + P +(0.5704026) + 4.150
0.030 MPa < P <0.671 MPa
L =0.179305 % P xx(0.8967323) + 4.223
0.671 MPa < P < 2.606 MPa
L = 0.09359843 « P »x(1.239114) + 4.340
2.606 MPa < P < 6.489 MPa
L =0.01068888 P »*(2.11376) + 4.740
6.489 MPa < P < 11.009 MPa
L = 1.333058E — 4x* P xx(3.707294) + 5.480
11.009 MPa < P < 14.946 MPa
L= 6.635658E — 3 *(P — 10.0)%%(3.223323) + 7.350
14.946 MPa < P < 18.079 MPa
L = 4.6844786E — 6xexp(0.7396875* P) + 10.020
18.079 MPa < P < 20.30 MPa.

C

P

C

P

C

p

C

P!

C

|2

C

p

Specific heat, gas phase at saturation

The following correlations give an approximation to the specific heat of light water in the gas
phase, C,glkJ/kgK], for saturation conditions. Their range of use is 0.050-20.40 MPa. For
pressures < 16.0 MPa, the accuracy is not worse than 0.12%; for pressures >16.0 MPa, the error

can be as high as 0.60%. Figure 11 shows the accuracy of the approximation.
Approximation functions:
Coc = 0.6471635+ (P — 0.006) *x(0.6400569) + 1.90
0.050 MPa < P < 0.599 MPa
C, = 0.5560633 » P +%(0.8197355) + 2.00
0.599 MPa < P <2.391 MPa
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Cy = 0.3187082% P »x(1.110271) + 2.30
2.391 MPa < P < 5.661 MPa

C,c = 0064275995 % P % (1.766106) + 3.12
5.661 MPa < P < 9.458 MPa

Cy = 3.8011048E — 3% P #%(2.816897) + 4.40
9.458 MPa < P < 12.900 MPa

C, = 0.1876175 xexp(0.2466925 % P) + 5.00
12.900 MPa < P < 16.309 MPa

Cyi = 7.620756E — 3 xexp(0.4117289 + P) + 9.20
16.309 MPa < P < 18.743 MPa

Cy = 6.5162612E — 6+exp(0.756211 % P) + 17.10
18.743 MPa < P < 20.40 MPa.

Dynamic viscosity, liquid phase at saturation

The following functions give an approximation to the dynamic viscosity of light water in the
liquid phase, Visc, [10~%kg/m s), for saturation conditions. Their range of use is 0.035-21.45 MPa
with the accuracy not worse than 0.10%. Figure 12 shows the accuracy of the approximation.

Approximation functions:

Visc, = 111.5993 % P % (—0.3425488) + 38.0
0.035 MPa < P < 0.960 MPa

Visc, = 134.5288 % P xx(—0.2848300) + 15.0
0.960 MPa < P < 3.948 MPa

Visc, = 141.5415 — 25.91353 *In(P)
3.948 MPa < P < 9.514 MPa

Visc, = 113.4599 xexp( —0.03279562 % P)
9.514 MPa < P < 15.074 MPa

Visc;, = 110.0 — 17.67922 xexp(0.05556056 * P)
15.074 MPa < P < 18.868 MPa

Visc, =9.12152% P — 0.3159837 x P %% 2.0
18.868 MPa < P < 20.430 MPa

Visc, = 64.0 — 0.00261596 xexp(0.4010038) P
20.430 MPa < P < 21.45 MPa.

Dynamic viscosity, gas phase at saturation

The following functions give an approximation of the dynamic viscosity of light water in the gas
phase, Viscg[10 ®kg/m s], for saturation conditions. Their range of use is 0.040-21.35 MPa with
the accuracy not worse than 0.065%. Figure 13 shows the accuracy of the approximation.

Approximation functions:
Viscg = 7.473620% P xx(0.2050149) + 7.6
0.040 MPa < P < 2.207 MPa
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Table 2. Summary of approximation functions

Property No. of functions  Range of use [MPa] Worst accuracy [%]

v, 7 0.075-21.50 0.14
Ds 7 0.085-21.50 0.22
hy 6 0.075-21.70 0.10
h 7 0.075-21.55 0.066
U, — 0.075-21.50 0.08
U — 0.085-21.50 0.11
T, 5 0.070-21.85 0.02
5 4 0.065-21.25 0.12
5o 5 0.025-21.50 0.10
5 0.030-13.30 0.08
Co 3 13.30-20.30 0.60
6 0.050-16.00 0.12
Cos 3 16.00-20.40 0.60
Visc, 7 0.035-21.45 0.10
Viscg 6 0.040-21.35 0.065

Viscg = 3.375163* P x(0.3916208) + 11.8
2.207 MPa < P < 5.480 MPa

Viscg = 0.9169410 % P xx(0.7644731) + 15.0
5.480 MPa < P < 9.585 MPa

Viscg = 5.030544 xexp(0.5045239% P) + 12.0
9.585MPa < P <14.351 MPa

Viscg = 0.4423761 xexp(0.1458726 % P) + 18.8
14.351 MPa < P < 81.385 MPa

Viscg = 0.01082229 xexp(0.3071918 % P) + 22.2
18.385 MPa < P < 20.347 MPa

Viscg = 6.6753655E — 6xexp(0.6347700 x P) + 25.1
20.347MPa < P < 21.35 MPa.

SUMMARY

The functions presented in this paper allow rapid calculation of the thermodynamic properties
of light water for saturation conditions. Their range of use is from below 1b to just below the critical
point with a high enough accuracy for the purpose of thermalhydraulic systems analysis. The
ranges and accuracies for each property are summarized in table 2. It should be noted that internal
energy, U, can be calculated using the correlations for specific volume and specific enthalpy and
the equation U = H — PV. This yields an error of <0.11%.
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APPENDIX

The Rate Form of the Equation of State

The development of a non-iterative equation of state for two-phase flow systems was recently
investigated (Sollychin et al. 1985; Garland & Sollychin 1988). At present, the equation of state
is usually solved by iterative numerical techniques. By recasting the equation of state the time
derivative of P can be solved directly and the use of iterative methods can be eliminated. The
time derivative form of the equation of state was developed by considering an arbitrary volume
of two-phase fluid as a thermodynamic system where both phases are at saturation under a
uniform saturation pressure, P. By utilizing the total mass of the fluid, M, the total enthalpy
in the system, H, the volume of the system, V, and taking the derivatives of these quantities with
respect to time, one obtains [A.1] which is dependent on the initial pressure and on the rate of
change of mass, volume and enthalpy in the system:

dMm dH dv
P F (P)T + Fz(P)E + Fz(P)'a‘t‘ Al
dr M,F,(P)+ M/F{(P) ' :
where
Fi(P) = hg*v, — h *vg,
Fy(P)=vg— vy,
Fy(P)= —(hg — ho),
dh dv
Fy(P) =3 (ba —v) = 5 (ha = o)
and
dh dv
FS(P)=d—}:(UG_UL)—-d_}:(hG—hL)'

This form involves combinations of the saturation values of specific volume and specific enthalpy
in liquid and gas phases, and the derivatives of these properties with respect to pressure. Thus we
can incorporate the approximation functions described above to easily solve the equation of state
[1]. The derivatives are determined simply by taking the derivatives of the approximation functions
with respect to pressure.



